Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Orthop ; 8(2): 130-141, 2017 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-28251063

RESUMO

AIM: To investigate the efficacy of a chitosan/polyethylene glycol blended paste as a local antibiotic delivery device, particularly in musculoskeletal wounds. METHODS: Acidic (A) chitosan sponges and neutralized (N) chitosan/polyethylene glycol (PEG) blended sponges were combined in ratios of 3A:2N, 1A:1N, and 2A:3N; then hydrated with phosphate buffered saline to form a chitosan/PEG paste (CPP). Both in vitro and in vivo studies were conducted to determine the potential CPP has as a local antibiotic delivery device. In vitro biocompatibility was assessed by the cytotoxic response of fibroblast cells exposed to the experimental groups. Degradation rate was measured as the change in dry mass due to lysozyme based degradation over a 10-d period. The antibiotic elution profiles and eluate activity of CPP were evaluated over a 72-h period. To assess the in vivo antimicrobial efficacy of the CPP, antibiotic-loaded paste samples were exposed to subcutaneously implanted murine catheters inoculated with Staphylococcus aureus. Material properties of the experimental paste groups were evaluated by testing the ejection force from a syringe, as well as the adhesion to representative musculoskeletal tissue samples. RESULTS: The highly acidic CPP group, 3A:2N, displayed significantly lower cell viability than the control sponge group. The equally distributed group, 1A:1N, and the highly neutral group, 2A:3N, displayed similar cell viability to the control sponge group and are deemed biocompatible. The degradation studies revealed CPP is more readily degradable than the chitosan sponge control group. The antibiotic activity studies indicated the CPP groups released antibiotics at a constant rate and remained above the minimum inhibitory concentrations of the respective test bacteria for a longer time period than the control chitosan sponges, as well as displaying a minimized burst release. The in vivo functional model resulted in complete bacterial infection prevention in all catheters treated with the antibiotic loaded CPP samples. All experimental paste groups exhibited injectability and adhesive qualities that could be advantageous material properties for drug delivery to musculoskeletal injuries. CONCLUSION: CPP is an injectable, bioadhesive, biodegradable, and biocompatible material with potential to allow variable antibiotic loading and active, local antibiotic release to prevent bacterial contamination.

2.
Clin Orthop Relat Res ; 475(7): 1857-1870, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28097503

RESUMO

BACKGROUND: Local drug delivery devices offer a promising method for delivering vancomycin and amikacin for musculoskeletal wounds. However, current local delivery devices such as beads and sponges do not necessarily allow for full coverage of a wound surface with eluted antibiotics and do not address the need for reducing the antibiotic diffusion distance to help prevent contamination by bacteria or other microorganisms. We blended chitosan/polyethylene glycol (PEG) pastes/sponges to increase biocompatibility and improve antibiotic coverage within the wound. QUESTIONS/PURPOSES: (1) Are blended chitosan/PEG pastes biodegradable? (2) Are the blended pastes biocompatible? (3) How much force does paste require for placement by injection? (4) Will the pastes elute active antibiotics to inhibit bacteria in vitro? (5) Can the pastes prevent infection in a preclinical model with hardware? METHODS: Our blended paste/sponge formulations (0.5% acidic, 1% acidic, and acidic/neutral) along with a control neutral 1% chitosan sponge were tested in vitro for degradability, cytocompatibility, injectability tested by determining the amount of force needed to inject the pastes, elution of antibiotics, and activity tested using zone of inhibition studies. Along with these studies, in vivo models for biocompatibility and infection prevention were tested using a rodent model and an infected mouse model with hardware, respectively. By evaluating these characteristics, an improved local drug delivery device can be determined. RESULTS: All three of the paste formulations evaluated were almost fully degraded and with 6 days of degradation, the percent remaining being was less than that of the control sponge (percent remaining: control 99.251% ± 1.0%; 0.5% acidic 1.6% ± 2.1%, p = 0.002; 1% acidic 1.7% ± 1.6%, p = 0.002; acidic/neutral 2.3% ± 1.7%, p = 0.010). There was good biocompatibility because cell viability in vitro was high (control 100.0 ± 14.3; 0.5% acidic formulation at 79.4 ± 12.6, p < 0.001; 1% acidic formulation at 98.6 ± 6.1, p = 0.993; acidic/neutral formulation at 106.7 ± 12.8, p = 0.543), and in vivo inflammation was moderate (control 2.1 ± 1.2; 0.5% acidic 3.3 ± 0.2, p = 0.530; 1% acidic 2.5 ± 0.9, p = 0.657; acidic/neutral 2.9 ± 1.1, p = 0.784). Force required to inject the 0.5% acidic and 1% acidic pastes was less than the acidic/neutral paste used as a control (control 167.7 ± 85.6; 0.5% acidic 41.3 ± 10.7, p = 0.070; 1% acidic 28.0 ± 7.0, p = 0.940). At 72 hours, all paste formulations exhibited in vitro activity against Staphylococcus aureus (control 2.6 ± 0.8; 0.5% acidic 98.1 ± 33.5, p = 0.002; 1% acidic 87.3 ± 17.2, p = 0.006; acidic/neutral 83.5 ± 14.3, p = 0.010) and Pseudomonas aeruginosa (control 163.0 ± 1.7; 0.5% acidic 85.7 ± 83.6, p = 0.373; 1% acidic 38.0 ± 45.1, p = 0.896; acidic/neutral 129.7 ± 78.0, p = 0.896). Also, the paste formulations were able to prevent the infection with 100% clearance on the implanted hardware and surrounding tissue with the control being a 0.5% acidic paste group without antibiotics (control 4 × 104 ± 4.8 × 104; 0.5% acidic 0.0 ± 0.0, p value: 0.050; 1% acidic 0.0 ± 0.0, p = 0.050; acidic/neutral 0.0 ± 0.0, p = 0.050). CONCLUSIONS: The preliminary studies demonstrated promising results for the blended chitosan/PEG pastes with antibiotics provided degradability, biocompatibility, injectability, and infection prevention for musculoskeletal-type wounds. CLINICAL RELEVANCE: The preliminary studies with the chitosan paste delivered antibiotics to a contaminated musculoskeletal wound with hardware and prevented infection. More studies in a complex musculoskeletal wound and dosage studies are needed for continued development.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Quitosana/administração & dosagem , Portadores de Fármacos , Polietilenoglicóis/administração & dosagem , Infecções Relacionadas à Prótese/tratamento farmacológico , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Técnicas In Vitro , Camundongos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...